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Presentation Outline
� Technical uncertainty modeling and learning options
� Revelation distribution theorem to solve complex real options 

problems with both technical and market uncertainties into a 
Monte Carlo framework.

� A theory on learning measures to ease the solution of problems 
with learning options.
� A proposed learning measure η2, the expected % of variance 

reduction = normalized variance of revelation distribution.   
� This learning measure has nice/adequate mathematical properties.

� Axiom list for learning measures.
� Motivating example for portfolio of oil exploration assets.
� Bernoulli revelation processes: the simplest event-driven 

diffusion process for technical uncertainty evolution.
� Used to model oil exploration portfolio; long-term valuation to invest 

in new petroleum basins; option games applications; R&D projects. 
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Technical Uncertainty and Learning Options
� Technical uncertainty is related with specific project factors. 

� It incentives the investment in learning processes about the profit 
function: value of information (VOI) or learning options models.

� In petroleum E&P is the uncertainty related with the existence
(chance factor), volume (B) and quality (q) of an oil/gas reserve.

� In corporations with diversified investors, technical uncertainty 
does not demand risk-premium because has zero correlation 
with the market portfolio (so, β = 0 in CAPM world).
� But technical uncertainty reduces the project NPV (and real option

value) due to suboptimal investment and not due to manager utility.
� In terms of optimal investment scale, technical uncertainty almost 

surely will cause either under-investment or over-investment.
� There are some papers using stochastic processes like GBM to 

model technical uncertainty: this is very inadequate. Example:
� Expectations about the volume B changes only when a learning option

is exercised (new information), whereas oil prices change everyday.

Learning Options and Changes in Expectations
� In general, learning option exercise (investment in information)

changes the original (prior) uncertainty and the expected value.

� We´ll show that new relevant information always reduces the 
average uncertainty (expected variance of posterior distributions)

� We don´t know the true values from posterior distributions, so 
usually we work with the expected values to optimize the project. 
� So, it´s natural to work with the distribution of conditional expectations, 

here named revelation distribution. Here is developed a theory for this.
� Note that the revelation distribution is unique even with infinite posterior distrib.
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The Revelation Distribution Properties
� Full Revelation (perfect information): occurs when the signal S

(new information) reveals all the truth on a variable of interest X.
� Much more common is the partial revelation case, but full revelation is 

important as the limit goal for any investment in information process.
� Theorem 1: The revelation distribution of RX = E[X | S] have 4 

nice properties (limit, mean, variance and martingale):
a) For the limit case of full revelation, the revelation distribution p(RX) is 

equal to p(x), the prior distribution of X. So, the RX variance is bounded.
b) The revelation distribution expected value is equal to the original 

(prior) distribution expected value.
� E[E[X | S ]]  =  E[RX]  =  E[X] (known as law of iterated expectations)

c) The revelation distribution variance is equal to the expected variance 
reduction (i.e., prior variance less the expected posterior variance).
� Var[E[X | S ]] = Var[RX] = Var[X] − E[Var[X | S ]] = Expected variance 

reduction (this property reports the revelation power of a learning project).
d) In a sequential learning process S1, S2, … the revelation process {RX,n} = 

{E[X | S1, S2, … Sn]}, n = 1, 2, … is a (event-driven) martingale.
� In short, ex-ante these random variables RX,n have the same mean.

Oilfield with Technical and Market Uncertainties
� MC simulation combining uncertainties and using RX distrib. (Dias, 2002).

A

Option F(t = 1) = V − DF(t = 0) =
= F(t=1) * exp (− r*t)

Present Value (t = 0)

B

F(t = 2) = 0
Expired
Worthless

NPVdev = V − D  =  q B P − D
Jump size sampled from revelation distributions



4

Proposed Learning Measure η2
� The paper proposes a learning measure (η2) linked with the 

revelation distribution variance given by Theorem 1(c). 

� It has surprising nice properties (next slide) and will be used 
also to build revelation processes. (jump?)

� It can be used in Dias (2002) example to see the VOI x η2:
� It is rough linear, except for 

nonconcavity at low η2.
� Because is easier to optimize 

with perfect information, we 
could use linearity (VOI at η2

= 0 and η2 = 1) for fast calculus
� This was done at Petrobras for 

4D seismic valuation (2003). 

� The learning measure η2 is the expected percentage of variance reduction;
� η2 is also the normalized revelation distribution variance. 

Properties for the Learning Measure η2
� Proposition 1: Let X and S be two non-trivial r.v. with finite 

variances and learning measure η2(X | S) defined before. Then:
a) The measure η2(X | S) always exists;
b) The measure η2 is, in general, asymmetric, i.e., η2(X | S) ≠ η2(S | X);
c) The measure η2 is normalized in unit interval, i.e., 0 ≤ η2 ≤ 1;
d) If X and S are independent r.v. ⇒ η2(X | S) =  η2(S | X)  =  0; in addition, is 

valid the condition:  η2(X | S) =  0   ⇔ Var[RX(S)] = 0;
e) η2(X | S) = 1 ⇔ exists a functional dependence, i.e., ∃ r.v. g(S), so that X = g(S);
f) The measure η2(X | S) é invariant under linear transformations of X, i.e., for 

any real numbers a and b, with a ≠ 0, η2(a X + b | S) =  η2(X | S);
g) .η2(X | S) is invariant under linear and nonlinear transformation of S if the

transformation g(S) is a 1-1 function: η2(X | g(S)) = η2(X | S) , if g(s) is invertible;
h) If Z1, Z2,…are iid, with S = Z1 +…+ Zj and X = Z1 +…+ Zj + k ⇒ η2(X | S) = j / ( j+k)

� Theorem 2 (Learning measure decomposition): Let the signals 
S1, S2, … , Sn, be independent. Let X = f(S1) + g(S2) + . . . + 
h(Sn), where f, g, . . . , h, are any real valued functions. Then:

η2(X | S1) + η2(X | S2) + … + η2(X | Sn) = 1
� For product or quotient of functions, we can apply it with a logarithm transform.
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Axioms for Probabilistic Learning Measures
� Inspired in Rényi axioms for measures of dependence between r.v., the axiom 

list below gives the desirable properties for a learning measure M(X | S):
A. M(X | S) shall exist at least for all non-trivial r.v. X and S with finite uncertainties;
B. M(X | S) shall be, in general, asymmetric in order to capture learning asymmetries 

between X and S (X can learn a lot with S, but not vice-versa, e.g., X = S2);
C. M(X | S) shall be normalized in the unit interval, i. e.,  0 ≤ M(X | S) ≤ 1;
D. M(X | S) = 0 ⇒ zero learning (including, but not only, if X and S are independent);
E. In case of functional dependence, M shall be maximum: X = f(S)  ⇒ M(X | S) = 1. In 

addition,  M(X | S)  = 1 ⇒ maximum learning; 
F. M(X | S) shall be invariant under linear transforms (changes of scale) of either 

X or S, i.e. (a ≠ 0): M(a X + b | S) =  M (X | S) and M(X | S) =  M (X | a S + b);
G. M(X | S) shall be practical, i.e., easy interpretation and easy to quantify/estimate;
H. M(X | S) shall be additive, i. e., if S can be decomposed into a sum of independent

factors S1 + S2 +… + Sn, with knowledge of all Sk providing maximum learning, 
then: M(X | S1) +  M(X | S2) + … + M(X | Sn)  =  1

� Theorem 3: The proposed learning measure η2 obeys the entire 
axiom list. In some cases (F and H), in a way stronger than required.

� Showed with Prop. 1 and Theorem 2, considering the variance as learning indicator.

Bernoulli Revelation Process: Motivating Example
� One exploratory tract has two positively correlated and equal

prospects, both with chance factor CF = 30%, drilling cost of $ 
30 million, and both with NPVDP = 95 million, in case of success.
� So, both the expected monetary values (EMV) are negatives: 

EMV1 = EMV2 =  − 30 + (0.3 x 95)  =  − 1.5 million
� For simplicity, don´t consider market uncertainty (in oil prices, etc.) 

� Is the portfolio value = zero? No, the prospects are dependent: 
drilling first the prospect 1 reveals information to prospect 2! 

� Due to prospects positive dependence, CF2 must be revised CF2
+ > CF2

in case of good news and down to CF2
− < CF2, in case of bad news.

� Let the dependence of CF1 (the signal) and CF2 (interest variable) be so that:

Information
Revelation (well 1)

CF2
+ = 50% 

0.3

CF2
− = 21.4%

Revealed Scenarios
(revelation distribution)

0.7CF2 before = 30% 

Updated EMV2

EMV2
+ =  − 30 + (0.5 x 95) =

=  +  17.5 million

EMV2
− =  − 30 + (0.214 x 95) =

=  − 9.7 million
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Dependence Leverages Value: Oil Exploration Portfolio
� Because we have an option to drill the well 2, we will exercise 

this option only if the revealed EMV2 is positive (i.e. EMV2
+)

� So, the portfolio value Π is positive thanks to optionallity and dependence
Π = EMV1 + [CF1 . Max(0, EMV2

+)] + [(1 − CF1) . Max(0, EMV2
−)] ⇒

⇒ Π = − 1.5  +  [(30% x 17.5) + (70% x 0)] = + 3.75 MM$
� A very different value when compared with the case of independence

� So, for portfolio of real assets, dependence can leverage value.
� In addition, if one firm owns one prospect and other firm owns the other 

one, the revelation effect is also important for option games applications
(war of attrition and bargain), as showed by Dias & Teixeira (2004). 

� A real life application at Petrobras (2003) was the long-term valuation of 
entry in a new petroleum basin, considering information revelation effects. 

� Chance factor has a Bernoulli distribution: two scenarios (0 or 
1), with probability of success (i.e., CF = 1) of p.

� The prospects dependence causes a learning effect, which must 
be studied in the context of bivariate Bernoulli distributions.
� This study set the revealed scenarios CF+ and CF− as function of η2

Bivariate Bernoulli Distribution Biv-Be(X, S)
� The bivariate Bernoulli distribution and its marginals are showed below:

� Multivariate distribution literature shows that are necessary limits of 
consistence for these distributions, named Fréchet-Hoeffding bounds. 
� In particular is not possible full revelation for any marginals X, S.

� Without loss of generality, set X = CF and by notational convenience 
for Bernoulli revelation processes, set p = CF0. In this case, the 
revelation distribution has two scenarios denoted by CF + and CF −:

CF + =  Pr[CF = 1 | S = 1]  =  E[CF | S = 1] 
CF − =  Pr[CF = 1 | S = 0]  =  E[CF | S = 0]

� So, CF0 evolves to CF + or CF −, depending on the signal S. 
� Elementary probability and η2 definition are used in the following theorem.
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Revealed CF Scenarios and Learning Measure η2
� Theorem 4: Let the (non-trivial) marginals be CF ~ Be(CF0) and S ~ Be(q), w/ 

a bivariate Bernoulli distribution linked by the learning measure η2(CF|S)
� The revealed success probabilities CF + and CF −, for positive dependence, are:

� η2 in this case is equal to the square of correlation coefficient ρ:

� Here η2 is symmetric: X and S ~ Bernoulli   ⇒ η2(CF | S)  =  η2(S | CF) 

� Here (Bernoulli) η2(CF | S)  =  0  ⇔ CF and S independent
� To assure the bivariate Bernoulli distrib. existence, the Fréchet-Hoeffding

bounds in terms of η2 are: 

For negative dependence,
just change signal after CF0

Exchangeable Bernoulli Distributions
� An important simplification is when the r.v. CF ~ Be(CF0) and S ~ Be(q)

are exchangeable (here mean p01 = p10). This assumption has been used 
intuitively in professional petroleum literature (e.g. Wang et al, 2000). 

� Proposition 2: if CF and S are exchangeable, then: 
� CF and S exchageable   ⇔ CF0 = q
� The Fréchet-Hoeffding bounds are not restrictions anymore:  0  ≤ η2 ≤ 1
� The revealed success probabilities CF + and CF −, in case of positive

dependence, are:

� Lemma 3: The necessary condition for CF full revelation (maximum 
learning) is that CF and S be exchangeable r.v.: 

η2(CF | S) = 1   ⇒ CF and S exchangeable r.v.  (jump next?)

CF + =   CF0 +    (1 – CF0)  η
CF − =   CF0 − CF0 η

⇒ CF + − CF − =  η
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Bernoulli Revelation Processes: Definitions
� Exploratory discovery process:  is a sequence of learning 

options exercises that results in a discovery. In general, these 
learning options have different learning costs, different time to 
learn, and different revelation powers, that can measured by η2.
� In oil exploration this sequence can be seismic search, drilling of 

wildcat wells, etc. In R&D, this sequence can be the R&D phases.
� Exploratory revelation process:  is the probabilistic effect over 

the interest variable caused by the exploratory discovery 
process. This variable can be the chance factor, oil in place, etc.

� Bernoulli revelation process: is a sequence of revelation 
distributions generated by a sequence of bivariate Bernoulli 
distributions that represents the interaction between a sequence 
of signals S with the chance factor of interest CF.
� In particular, exchangeable revelation Bernoulli processes permits 

that, given CF0 and a sequence of ηk, k = 1, 2, …, we can construct all 
the revelation process because the success probabilities for the signals 
Sk are automatically defined by exchangeability assumption. 

Bernoulli Revelation Processes: Types
� Bernoulli Revelation Processes can be totally convergente (to full 

revelation) or not; recombining scenarios or not, exchangeable or not. 

� An apparent paradox: By Theorem 1(a), the revelation distribution at full 
revelation limit must have only two scenarios (prior distrib.) How is it true 
if is growing the no of scenarios?
Near of full revelation limit, the 
mass probability concentrates at
scenarios near 0 and near 1.
In limit, only two scenarios has
mass probability, and = prior prob.
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Conclusions
� This paper presents a theory for technical uncertainty and its 

evolution with the exercise of learning options, based in the 
conditional expectations generated by information revelation.
� Theorem 1 pointed the main conditional expectation distribution 

properties. This distribution is named revelation distribution.
� Revelation distributions was used to solve complex real options problems 

in a risk-neutral Monte Carlo framework combining many uncertainties.
� The proposed learning measure η2 has a direct link with that 

because is the normalized revelation distribution variance.
� It has the intuitive interpretation as the expected % of variance 

reduction induced by the exercise of learning options.
� Surprising convenient math properties were presented for η2. 

� This theory was applied to oil exploration chance factor, 
starting a theory on Bernoulli revelation processes (BRP).
� After a motivating example in portfolio of exploratory prospects, 

was discussed properties of BRP and some possible alternatives.
� Thank you very much! Merci beaucoup! 

Anexos 

APPENDIX
SUPPORT SLIDES
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Distributions 
of conditional
expectations

Posterior Distributions x Revelation Distribution
� Higher volatility, higher option value. Why learn, reducing uncertainty?

Reduction 
of technical 
uncertainty

⇓
Increase the
variance of
revelation
distribution
(and so the 
option value)

Conditional Expectation in Theory and Practice
� What is the relevance of the conditional expectation concept for 

learning process valuation?
� We saw that is much simpler to work with the unique conditional 

expectation distribution than many posterior distributions.
� Other practical advantage: expectations has a natural place in finance

� Firms use current expectations to calculate the NPV or the real options exercise 
payoff. Ex-ante the investment in information, the new expectation is conditional.

� The price of a derivative is simply an expectation of futures values (Tavella, 2002) 
� The concept of conditional expectation is also theoretically sound:

� We want to estimate X by observing I, using a function g( I ). 
� The most frequent measure of quality of a predictor g is its mean 

square error defined by MSE(g) = E[X − g( I )]2 . The choice of g* 
that minimizes the error measure MSE(g) is exactly the conditional 
expectation E[X | I ]. 

� This is a very known property used in econometrics
� Even in decision analysis literature, is common to work with conditional 

expectation inside the maximization equation (e.g., McCardle, 1985) 
� But instead conditional expectation properties, the focus has been likelihood function
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Learning Asymmetry and Correlation
� Given two r.v. A and B, many times B learn more with A than 

A learn with B (or vice-versa), i.e., in general the learning is 
asymmetric. Let us see an example: B = A2 for the numbers:

� The correlation coefficient (symmetric measure) is zero (!) in 
the above example, although A and B be obviously dependent 
(they have a functional dependence!).

� The proposed measure η2, is asymmetric and captures the full 
learning of B given A: η2(B | A) = 100% ≠ η2(A | B) = 0%.

� If we know the value of A, then 
the value of B is defined (full 
learning or full revelation).
� But if we know the value of B,
the value of A is not defined. 
(variance can even become higher). 

Information Likelihood
� In the traditional literature is much common the concept of 

information likelihood of S to predict X. It´s a kind of reliability.
� They are the called inverse probabilities p(S | X). 

� However, likelihood is not a good learning measure. Example:
� There are two “infallible experts” that know all the truth about the 

stock exchange market. They can be consulted in order to know if 
the company X stock is going to rise or not in the next day market. 
Assume that is known that one expert always says the truth and the
other expert always lies: the inverse probabilities are p1(S = a | x = a) 
= 100% and p2(S = a | x = a) = 0%, a = rise or not rise.

� By the learning point of view the advises are equivalent, because we
have full learning of X in both cases:

� If the “infallible expert 2” says that the stock will not rise, then we 
learn that this stock is going to rise next day with probability 1!

� So, this measure atributes two different values for the same learning
and (even worse) using the value zero to indicate maximum learning.

� Likelihood also doesn´t obey other elementar properties for M(X|S) 
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Recombining Process: Revelation Limit 
� Exchangeable recombining Bernoulli processes never converges 

to full revelation. In the limit, the process converges to a partial 
revelation, with the limit being simply 1 − η1, as showed by the 
limite: 

The figure shows 
an example with
η1 = 0.4

Bernoulli Revelation Processes: Some Details

Recombining, exchangeable:
For signal Sk, we need
only η1 to get ηk:

Recombining process


